Exam Analysis on Manifolds

WIANVAR-07.2016-2017.2A

April 10, 2017

This exam consists of three assignments. You get 10 points for free.

Assignment 1. (30 pt.)

Let $x, y, z : \mathbb{R}^3 \to \mathbb{R}$ be the coordinate functions on \mathbb{R}^3 . The map $\eta : \mathcal{X}(\mathbb{R}^3) \to C^{\infty}(\mathbb{R}^3)$ maps a vector field $X = a_1 E_1 + a_2 E_2 + a_3 E_3$ on \mathbb{R}^3 , where $a_i : \mathbb{R}^3 \to \mathbb{R}$ are C^{∞} -functions, to the function $\eta(X)$ given by

$$\eta(X) = x a_2 + y a_3 + z a_1.$$

Note that $E_1 = \frac{\partial}{\partial x}$, $E_2 = \frac{\partial}{\partial y}$ and $E_3 = \frac{\partial}{\partial z}$.

- 1. (8 pt.) Prove that η is a differential one-form¹, and that $\eta = z dx + x dy + y dz$.
- 2. (8 pt.) Let $f : \mathbb{R}^2 \to \mathbb{R}^3$ be the map given by f(u,v) = (u + v, u v, uv). Determine functions $a, b : \mathbb{R}^2 \to \mathbb{R}$ such that $f^*\eta = a \, du + b \, dv$.
- 3. (7 pt.) Compute $\omega = \eta \wedge d\eta$.
- 4. (7 pt.) Prove that ω is exact, and determine a differential two-form σ such that $\omega = d\sigma$.

Assignment 2. (30 pt.)

Let $f: \mathbb{R}^3 \to \mathbb{R}$ be a C^{∞} function with zero set $M = f^{-1}(0)$. Furthermore,

$$(\frac{\partial f}{\partial x}(p), \frac{\partial f}{\partial y}(p)) \neq (0, 0) \text{ for } p \in M.$$

The map $\mathfrak{i}: \mathcal{M} \to \mathbb{R}^3$ is the inclusion map.

- 1. (6 pt.) Prove that M is a 2-dimensional submanifold of \mathbb{R}^3 .
- 2. (6 pt.) Determine a basis of T_pM , for $p \in M$.
- 3. (4 pt.) Let σ be the differential one-form on \mathbb{R}^3 given by $\sigma = df$. Prove that $i^*\sigma = 0$.
- 4. (7 pt.) Let $\Omega = dx \wedge dy \wedge dz$ be the volume form on \mathbb{R}^3 , and let X be the vector field on \mathbb{R}^3 given by

$$X = \frac{\partial f}{\partial x} E_1 + \frac{\partial f}{\partial y} E_2 + \frac{\partial f}{\partial z} E_3.$$

Prove that

$$\iota_{X}\Omega = \frac{\partial f}{\partial z} \, dx \wedge dy + \frac{\partial f}{\partial x} \, dy \wedge dz + \frac{\partial f}{\partial y} dz \wedge dx.$$

(Recall that $\iota_X \Omega$ is the differential two-form given by $\iota_X \Omega(Y, Z) = \Omega(X, Y, Z)$.)

5. (7 pt.) Prove that $i^*(\iota_X \Omega)$ is a nowhere zero differential two-form on M.

Assignment 3 on next page

¹Equivalently: a differential form of degree one

Assignment 3. (30 pt.)

Note: the solution of this assignment is likely to be shorter than its statement.

Let M be a compact differentiable manifold, and let $\varphi : M \to S^2$ be a C^{∞} -map. In part 4 you are asked to prove that every closed differential one-form on the unit sphere S^2 in \mathbb{R}^3 is exact.

1. (7 pt.) If φ is a diffeomorphism then every closed differential one-form on M is exact. Prove this, assuming the claim in part 4 holds.

We are going to use this result to prove that the torus and the two-sphere are not diffeomorphic. Let M be the torus of revolution in N := { $(x, y, z) \in \mathbb{R}^3 | (x, y) \neq (0, 0)$ } (the complement of the z-axis in \mathbb{R}^3) obtained by rotating the circle in the xz-plane with radius r and center (R, 0, 0) around the z-axis, where 0 < r < R, and let $j: M \to N$ be the inclusion map. On N we consider the differential form η , given by

$$\eta = \frac{1}{x^2 + y^2} \left(-y \, dx + x \, dy \right). \tag{1}$$

Let $\omega = j^*\eta$ be its pull-back to the torus M.

- 2. (7 pt.) Prove that ω is a closed differential one-form on M.
- 3. (7 pt.) Prove that ω is not an exact differential one-form on M.

Hint: Let $\psi:\mathbb{S}^1=\{(u,\nu)\in\mathbb{R}^2\mid u^2+\nu^2=1\}\to M$ be the embedding given by

$$\psi(\mathbf{u},\mathbf{v}) = \big((\mathbf{R}+\mathbf{r})\,\mathbf{u},(\mathbf{R}+\mathbf{r})\,\mathbf{v},\mathbf{0}\big),\,$$

and prove that $\int_{\mathbb{S}^1} \psi^* \omega \neq 0$.

 (9 pt.) Prove that every closed differential one-form on S² is exact. Conclude that the torus and the two-sphere are not diffeomorphic.

Hint: Let ω be a closed differential one-form on \mathbb{S}^2 . Let (f_1, U_1) and (f_2, U_2) be the charts given by (inverse) sterographic projection from the north pole $p_1 = (0, 0, 1)$ and the south-pole $p_2 = (0, 0, -1)$, respectively. So in particular, $U_1 = U_2 = \mathbb{R}^2$, and $f_1(U_1) \cap f_2(U_2)$ is connected. Use Poincaré's lemma to conclude that there are functions $\varphi_i : f_i(U_i) \to \mathbb{R}$ with $\omega|_{f_i(U_i)} = d\varphi_i$, and conclude that $\varphi_2 - \varphi_1$ is constant on the connected set $f_1(U_1) \cap f_2(U_2)$. Use this to define a function φ with $d\varphi_i = d\varphi$ on $f_i(U_i)$.

Solutions

Assignment 1.

1. It is easy to check that, for vector fields X and Y on \mathbb{R}^3 and for $f \in C^{\infty}(\mathbb{R}^3)$: $\eta(X + Y) = \eta(X) + \eta(Y)$ and $\eta(fX) = f\eta(X)$. Therefore, η is a differential one-form. Now

$$\eta = \eta(E_1) \, dx + \eta(E_2) \, dy + \eta(E_3) \, dz$$

= $z \, dx + x \, dy + y \, dz.$ (2)

2. A straightforward computation shows that

$$f^{*}(dx) = d(x \circ f) = d(u + v) = du + dv,$$

$$f^{*}(dy) = d(y \circ f) = d(u - v) = du - dv,$$

$$f^{*}(dz) = d(z \circ f) = d(uv) = v du + u dv.$$

Therefore,

$$f^*\eta = (z \circ f) f^*(dx) + (x \circ f) f^*(dy) + (y \circ f) f^*(dz)$$

= uv (du + dv) + (u + v)(du - dv) + (u - v)(v du + u dv)
= (2uv - v^2 + u + v) du + (u^2 - u - v) dv.

In other words, $a(u, v) = 2uv - v^2 + u + v$ and $b(u, v) = u^2 - u - v$.

3. Using (2) we get $d\eta = dz \wedge dx + dx \wedge dy + dy \wedge dz$, so

$$\eta \wedge d\eta = z \, dx \wedge dy \wedge dz + x \, dy \wedge dz \wedge dx + y \, dz \wedge dx \wedge dy$$
$$= (x + y + z) \, dx \wedge dy \wedge dz.$$

4. Every differential 3-form on \mathbb{R}^3 is closed, and, hence, exact according to Poincaré's Lemma. Therefore, there is a differential 2-form σ on \mathbb{R}^3 with $\omega = d\sigma$. Let $\sigma = f \, dy \wedge dz$, then $d\sigma = \frac{\partial f}{\partial x} \, dx \wedge dy \wedge dz$. Take, e.g., $f(x, y, z) = \frac{1}{2}x^2 + xy + xz$, in other words, take

$$\sigma = (\frac{1}{2}x^2 + xy + xz) \, \mathrm{d}y \wedge \mathrm{d}z.$$

Assignment 2.

1. Since $df_p: T_p\mathbb{R}^3 \to \mathbb{R}$ has rank one for all $p \in M$, the zero-set M of f is a two-dimensional submanifold of \mathbb{R}^3 .

2. Since $T_pM = \ker df_p$, a vector $v = v_1e_1 + v_2e_2 + v_3e_3$ is a tangent vector of M at p iff

$$v_1 \frac{\partial f}{\partial x}(p) + v_2 \frac{\partial f}{\partial y}(p) + v_3 \frac{\partial f}{\partial z}(p) = 0.$$

A non-zero solution is $v = -\frac{\partial f}{\partial y}(p) e_1 + \frac{\partial f}{\partial x}(p) e_2$. A solution w with a non-zero component in the e_3 -direction is

$$w = \begin{cases} -\frac{\partial f}{\partial z}(p) e_1 + \frac{\partial f}{\partial x}(p) e_3, & \text{if } \frac{\partial f}{\partial x}(p) \neq 0, \\ -\frac{\partial f}{\partial z}(p) e_2 + \frac{\partial f}{\partial y}(p) e_3, & \text{if } \frac{\partial f}{\partial x}(p) = 0. \end{cases}$$

Since $\{\nu,w\}$ is an independent system (and T_pM is two-dimensional), it is a basis of $T_pM.$

3. Straightforward, since $i^*(df) = d(f \circ i) = 0$ (since f(i(p)) = 0, for $p \in M$).

4. Let $\omega = \iota_X \Omega$, then

$$\omega = \omega(\mathsf{E}_1, \mathsf{E}_2) \, \mathrm{d} x \wedge \mathrm{d} y + \omega(\mathsf{E}_2, \mathsf{E}_3) \, \mathrm{d} y \wedge \mathrm{d} z + \omega(\mathsf{E}_3, \mathsf{E}_1) \, \mathrm{d} z \wedge \mathrm{d} x$$

Therefore, the claim follows from

$$\omega(E_1, E_2) = \Omega(\frac{\partial f}{\partial x}E_1 + \frac{\partial f}{\partial y}E_2 + \frac{\partial f}{\partial z}E_3, E_1, E_2) = \frac{\partial f}{\partial z},$$
$$\omega(E_2, E_3) = \Omega(\frac{\partial f}{\partial x}E_1 + \frac{\partial f}{\partial y}E_2 + \frac{\partial f}{\partial z}E_3, E_2, E_3) = \frac{\partial f}{\partial x},$$
$$\omega(E_3, E_1) = \Omega(\frac{\partial f}{\partial x}E_1 + \frac{\partial f}{\partial y}E_2 + \frac{\partial f}{\partial z}E_3, E_3, E_1) = \frac{\partial f}{\partial y}.$$

5. Let $p\in M,$ and let $\{\nu,w\}$ be the basis of T_pM determined in step 2. First observe that

$$(\mathfrak{i}^*(\iota_X\Omega))_p(\nu,w) = (\iota_X\Omega)_{\mathfrak{i}(p)}(d\mathfrak{i}_p(\nu),d\mathfrak{i}_p(w)) = \Omega_p(X(p),\nu,w).$$

(Note that $di_p: T_p M \to T_p \mathbb{R}^3$ is the inclusion map, so $di_p(\nu) = \nu$ and $di_p(w) = w$.) So we have to prove that $\Omega(X(p), \nu, w) \neq 0$. Assume $\frac{\partial f}{\partial x}(p) \neq 0$. Then

$$\begin{split} \Omega(X(p),\nu,w) &= \begin{vmatrix} \frac{\partial f}{\partial x}(p) & \frac{\partial f}{\partial y}(p) & \frac{\partial f}{\partial z}(p) \\ -\frac{\partial f}{\partial y}(p) & \frac{\partial f}{\partial x}(p) & 0 \\ -\frac{\partial f}{\partial z}(p) & 0 & \frac{\partial f}{\partial x}(p) \end{vmatrix} \\ &= \frac{\partial f}{\partial x}(p) \Big(\frac{\partial f}{\partial x}(p)^2 + \frac{\partial f}{\partial y}(p)^2 + \frac{\partial f}{\partial z}(p)^2 \Big) \neq 0. \end{split}$$

If $\frac{\partial f}{\partial x}(p) = 0$ the argument is similar.

Assignment 3.

1. Let ω be a closed differential one-form on M, then $\sigma := (\varphi^{-1})^* \omega$ is a closed differential one-form on \mathbb{S}^2 . Therefore, σ is exact, i.e., $\sigma = df$ for some C^{∞} function $f : \mathbb{S}^2 \to \mathbb{R}$. But then $\omega = \varphi^*(df) = d(f \circ \varphi)$. In other words, ω is exact.

2. A straightforward computation shows that $d\eta = 0$, so $d\omega = d(j^*\eta) = j^*(d\eta) = 0$.

3. A straightforward computation shows that

$$\psi^*\omega = (\psi \circ \mathfrak{j})^*\eta = \frac{1}{\mathfrak{u}^2 + \mathfrak{v}^2} \, (-\mathfrak{v} \, \mathfrak{d}\mathfrak{u} + \mathfrak{u} \, \mathfrak{d}\mathfrak{v}),$$

so $\int_{\mathbb{S}^1} \psi^* \omega = 2\pi \neq 0$. If $\omega = df$, then $\int_{\mathbb{S}^1} \psi^* \omega = \int_{\mathbb{S}^1} d(f \circ \psi) = \int_{\partial \mathbb{S}^1} f \circ \psi = 0$, since $\partial \mathbb{S}^1 = \emptyset$.

4. The hint is almost the solution. Let $\omega_i = f_i^*(\omega)$, then ω_i is a closed differential

one-form on \mathbb{R}^2 . By Poincaré's lemma, it is exact, so there are functions $\psi_i : U_i \to \mathbb{R}$ with $d\omega_i = d\psi_i$. Define $\varphi_i = \psi_i \circ f_i^{-1} : f_i(U_i) \to \mathbb{R}$, then $d(\varphi_1 - \varphi_2) = 0$ on $W := f_1(U_1) \cap f_2(U_2)$. Since W is connected, there is a constant c such that $\varphi_2 = \varphi_1 + c$ on W. Take $\varphi = \varphi_1$ on $f_1(U_1)$ and $\varphi = \varphi_2 - c$ on $f_2(U_2)$, then φ is a C^{∞}-function on \mathbb{S}^2 with $\omega = d\varphi$.

Use part 1 to conclude.